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Abstract

The objective of this paper is to analyze the onset of Marangoni convection for absorption process accompanied by

heat transfer using propagation theory. Ammonia–water is used as a representative solution pair for the absorption

process and 2-ethyl-1-hexonal is considered an additive. The re-modified solutal Marangoni number MBs is linearly

related to the modified solutal Biot number Bs�. Rearranging this relation, a useful correlation of the solutal Marangoni

number Ms with respect to the solutal Biot number Bs is obtained in a linear form. It is found that there is a critical Bs
causing the most unstable state of fluid layer. The critical time sc to mark the onset of Marangoni convection can be

predicted using the correlation developed in the present study. The results from the present study will provide a

guideline to enhance heat and mass transfer performance during the absorption process.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Marangoni convection; Absorption; Heat transfer; Propagation theory; Additive
1. Introduction

When an initially quiescent fluid experiences

absorption or desorption of a solute through a free

surface, the surface tension of the fluid varies with the

concentration and temperature of the fluid at the sur-

face. This variation of the surface tension can cause

Marangoni convection. After Pearson’s [1] theoretical

analysis of the thermal Marangoni convection, many

studies on Marangoni instability have been performed

theoretically or experimentally in the heat transfer sys-

tems with different boundary conditions [2–4]. Under the

linear stability theory, Sternling and Scriven [5] analyzed

solutal Marangoni instabilities of two immiscible fluid

layers with mass transfer through the interface. Their

onset criteria of Marangoni convection for linear basic

concentration profiles have been applied to other sys-
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tems [6,7]. Using propagation theory for evaporation

system, Kang et al. [8] analyzed Brian’s [7] system and

showed that theoretical results obtained by their

numerical simulation agree well with experimental ones

obtained by Brian et al. [9].

When certain surfactants are added to the liquid in

small quantities, the heat and mass transfer rate can be

significantly enhanced beyond the diffusion and con-

duction controlled rates of the stable system. Many

studies on these phenomena have been performed in

LiBr/H2O absorption process [10–12]. Kang et al. [13]

conducted experiments on the visualization of Marang-

oni convection in NH3/H2O absorption system with

several additives and reported the meaningful results of

the effect of additives on the initiation of solutal Ma-

rangoni convection.

The objective of this study is to clarify the onset

criteria of Marangoni convection for absorption process

accompanied by heat transfer based on the propagation

theory. The results from the present study will provide a

guideline to enhance heat and mass transfer perfor-

mance during the absorption process.
ed.
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Nomenclature

a dimensionless wave number

A;B coefficients in Eq. (48)

Bs solutal Biot number

Bt thermal Biot number

C concentration

Ceq equilibrium concentration

d liquid depth

D differential operator

Dl solutal diffusivity

h transfer coefficient in gas phase

i imaginary number

Le Lewis number

MBs re-modified solutal Marangoni number

MBt re-modified thermal Marangoni number

Ms solutal Marangoni number

Mt thermal Marangoni number

P pressure

S surface tension

Sc Schmidt number

t time

T temperature
~U velocity vector

~u dimensionless velocity vector

W vertical velocity

w dimensionless vertical velocity

x, y, z coordinates

Greek symbols

a thermal diffusivity

b basic concentration gradient

D/ solutal penetration depth

/ dimensionless concentration

c surface tension gradient

l viscosity

m kinematic viscosity

h dimensionless temperature

q density

s dimensionless time

f similarity variable

Subscripts

0 basic state

1 perturbed state

c critical condition

i initial state

s solutal quantity

t thermal quantity

Superscript

* amplitude function

free

rigid

Tg C*

additivesZ g

Tb

gas

liquid

Fig. 1. Schematic diagram of system considered here.
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2. Marangoni convection

In general, the solute in solution lowers the surface

tension at the liquid–vapor interface. However in solu-

tion involving certain additives, as the concentration of

the solute increases, the surface tension of the liquid also

increases. When this happens, Marangoni convection

driven by surface tension variation occurs resulting in

significant enhancement of the heat and mass transfer

rate. Using the linear stability theory, Sternling and

Scriven [5] and Brian [6] reported that both the sign of

the surface tension gradient with respect to the solute

concentration and the direction of the mass transfer

mainly affect the onset of Marangoni convection.

In this present study, the absorbate transfers from the

gas phase to the liquid phase as shown in Fig. 1.

Applying the results of the above works to the absorp-

tion system considered here, the basic condition of the

onset of Marangoni convection is expressed as follow:

bcs < 0; ð1Þ

where bð¼ oC=oZÞ and csð¼ oS=oCÞ denote the basic

concentration gradient and the surface tension gradient

with respect to the solute concentration.
3. Formulation of problem

A horizontal liquid layer considered here is bounded

an upper free surface at Z ¼ 0 and a lower rigid plane at

Z ¼ d, as shown in Fig. 1. At time t ¼ 0 the absorbate at

different temperature from liquid layer, i.e., ammonia in

the gas phase begins to be absorbed into the absorbant

with additives, i.e., water involving 2-ethyl-1-hexanol.

The bulk liquid is incompressible and Boussinesque

solution. Both the Soret and Rayleigh effects caused by

absorption process are neglected. No absorption heat is

generated at the surface.

Under the above approximations, the governing

equations to represent Marangoni convection are given

by
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r � ~U ¼ 0; ð2Þ

q
o

ot

�
þ ~U � r

�
~U ¼ �rP þ lr2~U ; ð3Þ

o

ot

�
þ ~U � r

�
C ¼ D1r2C; ð4Þ

o

ot

�
þ ~U � r

�
T ¼ ar2T ; ð5Þ

S ¼ Si þ cs Cð � CiÞ þ ct Tð � TiÞ; ð6Þ

where ~U , q, P , l, C, D1, T , a, S and ctð¼ oS=oT Þ denote
the velocity vector, the liquid density, the pressure, the

liquid viscosity, the solute concentration, the solutal

diffusivity in the liquid, the temperature, the thermal

diffusivity of the liquid, the surface tension and the

surface tension gradient with respect to the temperature,

respectively. The subscript i, s and t represent the

quantity of the initial state, the solutal quantity and the

thermal one.

In the present system, the basic profiles of concen-

tration and temperature of the solution can be repre-

sented as the following dimensionless equation

o/0

os
¼ o2/0

oz2
;

oh0
os

¼ Le
o2h0
oz2

; ð7-1; 2Þ

with the following proper initial and boundary condi-

tions,

/0 ¼ 0; h0 ¼ 0 at s ¼ 0; ð8Þ

� o/0

oz
¼ Bsð1� /0Þ; � oh0

oz
¼ Btð1� h0Þ

at z ¼ 0; ð9Þ

o/0

oz
¼ 0; h0 ¼ 0 at z ¼ 1; ð10Þ

where z, s, /0 and /0 denote the dimensionless vertical

distance, the dimensionless time, the dimensionless basic

concentration of the solute, and the dimensionless basic

temperature, respectively. The subscript 0 denotes the

basic quantity. Length is non-dimensionalized by the

liquid depth d, the time by d2=D1, and the basic con-

centration by Ceq and the basic temperature by

DT ð¼ Tg � TbÞ. In the case of no-absorption heat gen-

eration at the surface, the boundary conditions of tem-

perature and concentration are given as Eq. (9), which is

a general expression at the surface. It can be applied for

both cases of equilibrium and non-equilibrium states.

The dimensionless parameters Le, Bs and Bt are defined

as

Lewis number Le ¼ a
D1

; ð11Þ

solutal Biot number Bs ¼ hsd
D1

; ð12Þ
thermal Biot number Bt ¼ htd
a

; ð13Þ

where hs and ht denote the mass-transfer coefficient and

the heat-transfer one, respectively.

Under the semi-infinite approximation, the similarity

solutions for the above equations are well known [14],

/0 ¼ erfc
z

2
ffiffiffi
s

p
� �

� exp Bs
�

� zþ sBs2
�

� erfc
z

2
ffiffiffi
s

p
�

þ Bss1=2
�

¼ erfc
f
2

� �
� exp Bs�f

�
þ Bs�

2
�
erfc

f
2

�
þ Bs�

�

for s < 0:01; ð14Þ

h0 ¼ erfc
z

2
ffiffiffiffiffiffiffi
Les

p
� �

� exp Bt
�

� zþ LesBt2
�

� erfc
z

2
ffiffiffiffiffiffiffi
Les

p
�

þ Bt
ffiffiffiffiffiffiffi
Les

p �

¼ erfc
f

2
ffiffiffiffiffi
Le

p
� �

� exp Bt�f
�

þ LeBt�
2
�

� erfc
f

2
ffiffiffiffiffi
Le

p
�

þ
ffiffiffiffiffi
Le

p
Bt�

�
for s < 0:01; ð15Þ

where similarity variable f ¼ z=s1=2, modified solutal

Biot number Bs� ¼ s1=2Bs and modified thermal Biot

number Bt� ¼ s1=2Bt. Here Bs� and Bt� are assumed to be

constant. The above similarity solutions are almost the

same with the exact solutions obtained without any

approximation for s < 0:01. By this reason they have

been used to study the convective instability analysis

of the horizontal fluid for deep-pool systems. Over a

certain absorbing rate exceeding the critical value, Ma-

rangoni convection will set in. The important dimen-

sionless parameters are identified as

solutal Marangoni number Ms ¼ csd
lD1

Ceq; ð16Þ

thermal Marangoni number Mt ¼ ctd
la

DT ; ð17Þ

Schmidt number Sc ¼ m
D1

: ð18Þ

The Marangoni numbersMs andMt are a measure of the

ratio of the driving (the imposed concentration differ-

ence Ceq; the temperature one DT ) and the damping (the

viscosity and the solute diffusion; the viscosity and the

conduction) in the system and are the most important

parameters in Marangoni convection.
4. Linear stability theory

Under the normal mode approximation, the dimen-

sionless disturbance quantities ~u1, /1 and h1 can be ex-

pressed as follow:
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ð~u1;/1; h1Þ ¼ ½~u�1ðs; zÞ;/
�
1ðs; zÞ; h

�
1ðs; zÞ� exp½iðaxxþ ayyÞ�;

ð19Þ

where~u1, /1 and h1 are the amplitude functions, and i, ax
and ay denote the imaginary number, the wave number

in the x-direction, and the wave number in the y-direc-
tion. x and y denote the dimensionless horizontal coor-

dinates. The perturbed velocity has the scale of D1=d.
The perturbed concentration has been non-dimension-

alized by Ceq and the perturbed temperature by DT with

the same manner of the basic ones. Under the linear

stability theory, the dimensionless amplitude equations

for the vertical velocity amplitude w�
1, concentration /�

1

and temperature h�1 are obtained respectively as follow

1

Sc
o

os

�
� o2

oz2

�
� a2

�	
o2

oz2

�
� a2

�
w�

1 ¼ 0; ð20Þ

o/�
1

os
þ w�

1

o/0

oz
¼ o2

oz2

�
� a2

�
/�

1; ð21Þ

oh�1
os

þ w�
1

oh0
oz

¼ Le
o2

oz2

�
� a2

�
h�1; ð22Þ

where the dimensionless wave number a denotes

a2x þ a2y
� �1=2

. Neglecting the solute accumulation, the

surface diffusion and the absorption heat in the absorbed

layer, the proper boundary conditions are given by

w�
1 ¼ 0 at z ¼ 0; ð23Þ

a2ðMs/�
1 þ LeMth�1Þ ¼ � o2w�

1

oz2
at z ¼ 0; ð24Þ

o/�
1

oz
¼ Bs/�

1 at z ¼ 0; ð25Þ

oh�1
oz

¼ Bth�1 at z ¼ 0; ð26Þ

w�
1 ¼

ow�
1

oz
¼ o/�

1

oz
¼ h�1 ¼ 0 at ðz ¼ 1Þ: ð27Þ

Eq. (24) means that the tangential shear stress is bal-

anced by surface tension driven by the solute concen-

tration change and the temperature one at the upper free

surface.
5. Scaling analysis

Foster [15] showed that for deep-pool system the

onset time to mark convective motion is related to the

penetration depth other than liquid depth. In the small

time region, applying the scaling analysis to Eqs. (21),

(22) and (24) the following relations are possible

w�
1

D/0

D/
� /�

1

D2
/

; ð28Þ
w�
1

Dh0
D/

� h�1
D2

/

; ð29Þ

ðMs/�
1 þ LeMth�1Þ � � w�

1

D2
/

; ð30Þ

where D/ represents the dimensionless concentration

penetration depth. The basic concentration and tem-

perature gradients are obtained from Eqs. (14) and (15)

as follow

D/0

D/
� Bs expðBs� þ Bs�

2Þerfcð0:5þ Bs�Þ; ð31Þ

Dh0
D/

� Bt expðBt� þ LeBt�
2Þerfcð0:5=

ffiffiffiffiffi
Le

p
þ

ffiffiffiffiffi
Le

p
Bt�Þ:

ð32Þ

Substituting Eqs. (31) and (32) into Eqs. (28) and (29)

and rearranging Eq. (30) the following relation between

non-dimensional parameters yield

MBsþMBt=Le ¼ Ms�Bs� expðBs� þ Bs�
2Þerfcð0:5þ Bs�Þ

þMt�Bt� expðBt� þ LeBt�
2 Þ

� erfcð0:5=
ffiffiffiffiffi
Le

p
þ

ffiffiffiffiffi
Le

p
Bt�Þ; ð33Þ

where the modified solutal Marangoni number

Ms� ¼
ffiffiffi
s

p
Ms and the modified thermal Marangoni

number Mt� ¼
ffiffiffi
s

p
Mt. The re-modified solutal Marang-

oni number MBs and the re-modified thermal one MBt
represent the first term and the second term times Lewis

number Le in the right-hand side of the above equation

respectively. These re-modified parameters obtained by

the scaling analysis can be identified as

re-modified solutal Marangoni number

MBs ¼ csd
2

lD1

oC0

oZ

� �




Z¼DC

; ð34Þ

re-modified thermal Marangoni number

MBt ¼ ctd
2

la
oT0
oZ

� �




Z¼DC

: ð35Þ

Considering Eqs. (16), (17), (34) and (35), Marangoni

number characterizing the absorption system can be

defined with overall concentration difference or the basic

concentration gradient for absorption process.
6. Propagation theory

For small time region, using similarity variable f, the
coordinate of system can be transformed from ðs; zÞ-
frame to ðs; fÞ-frame. In this sense the dimensionless

velocity in ðs; fÞ-frame w� can be expressed as follow

w�ðfÞ ¼ W �
1

WDC

¼
ffiffiffi
s

p
w�

1ðs; zÞ; ð36Þ
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where W �
1 is the disturbance velocity and WDC ð¼ DC=tÞ is

the growth velocity of solutal penetration depth in which

DC and t denote the solutal penetration depth and time.

With this procedure, the following relations are possible:

½w�
1;/

�
1; h

�
1� ¼ ½w�ðfÞ=

ffiffiffi
s

p
;/�ðfÞ; h�ðfÞ�: ð37Þ

Inserting the above forms into Eqs. (20)–(27) yield

D2
��

� a�
2
�2

þ 1

2Sc
fD3

�
� a�

2

fDþ 2a�
2
�	

w� ¼ 0;

ð38Þ

D2

�
þ 1

2
fD� a�

2

�
/� � w�D/0 ¼ 0; ð39Þ

Le D2

�
þ 1

2Le
fD� a�

2

�
h� � w�Dh0 ¼ 0 ð40Þ

with the boundary conditions

w� ¼ 0 at f ¼ 0; ð41Þ

D2w� ¼ �a�ðMs�/� þ LeMt�h�Þ at f ¼ 0; ð42Þ

D/� ¼ Bs�/� at f ¼ 0; ð43Þ

Dh� ¼ Bt�h� at f ¼ 0; ð44Þ

w� ¼ Dw� ¼ D/� ¼ h� ¼ 0 for f ! 1; ð45Þ

where Dð�Þ ¼ dð�Þ=df, a� ¼ as1=2. All these dimensionless

groups having the superscript � are assumed to be ei-

genvalues through s. Then, Eqs. (38)–(45) are functions

of the similarity variable f only. For a given Sc, Le, Bs�,
Bs�, Mt� and a� the minimum value of Ms� is found

numerically.
0                                                  1                                                  2
Bs*

eq. (46)

Fig. 3. Re-modified solutal Marangoni number MBs versus

modified solutal Biot number Bs� with no heat transfer.
7. Results and discussion

With the propagation theory the marginal stability

curves for various Sc are obtained as shown in Fig. 2. It

is found that the minimum values of Ms� slightly de-

crease with increasing Sc for other fixed parameters and

the curves become almost the same for Sc > 500. This

means that the increase of Sc makes the fluid layer be

more unstable and the effect of Sc on the criteria of

solutal Marangoni convection instability is not signifi-

cant for a larger value than 500.

For an absorption system without heat transfer, the

re-modified solutal Marangoni number MBs is linearly

related to the modified solutal Biot number Bs� as shown
in Fig. 3. The following linear correlation is found

within the bound of 1% error:

MBs ¼ 5:36þ 7:43Bs�: ð46Þ

The above equation for non-linear basic profile system is

similar to Nield’s result (1964) for linear basic profile

system, which is Mt ¼ 32:073Bt for a large Bt.
Rearranging Eq. (46) to Ms� instead of MBs, the

following equation is obtained:

Ms� ¼ 5:36þ 7:43Bs�

Bs� expðBs� þ Bs�2Þerfcð0:5þ Bs�Þ : ð47Þ

It is plotted in the solid line and the values obtained by

simulation are featured with the circles in Fig. 4

respectively. Fig. 4 shows that Ms� has the minimum at

the value of Bs� near 0.85. From the definition of Ms�, it
is obvious that when Ms� is minimum, sc is also mini-

mum with given conditions. It is known that the shorter

sc is, the faster Marangoni convection sets in. Therefore

the critical Bs� at which the minimum value of Ms� is
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obtained makes the fluid layer most unstable with a

given condition.

Comparing with Pearson’s result [1] Ms becomes

infinite instead of a certain value for Bs ¼ 0. Pearson

used Marangoni number based on the basic gradient.

On the other hand, Marangoni number used in the

present study is based on the overall concentration dif-

ference. Regarding the difference of definition, Rabin

[16] pointed out that Marangoni number defined by

Pearson included the Biot number.

Fig. 5 shows the effect ofMs on the critical time sc for
various Bs. It is represented that there is a pair ofMs and
a critical value of Bs to make the fluid layer most

unstable. For example Bs of 5 is the critical value for the

larger values of Ms than 900.

The results in the sense of linear relation of the re-

modified parameters to Bs� are shown in Fig. 6 for

various Bt� and Fig. 7 for various Mt�, respectively.

According to the definition of MBt, it varies with Mt�

and Bt�. In Fig. 6, the effect of Bs� on the sum of MBs
andMBt are obtained with a fixedMt� but a variable Bt�.
In Fig. 7, these are calculated with a fixed Bt� but a

variable Mt�. Figs. 6 and 7 show that the values of

MBsþMBt for given Bt� and Mt� with other fixed



Table 1

Coefficients A and B in Eq. (48) for Fig. 6

Bt� A B

10�2 7.47 6.17

5 · 10�2 7.35 8.21

10�1 7.32 9.37

5 · 10�1 7.34 10.78

1 7.37 10.86

Table 2

Coefficients A and B in Eq. (48) for Fig. 7

Mt� A B

1 7.47 6.17

5 7.31 9.46

10 7.19 13.55

15 7.10 17.60
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parameters are linearly related to Bs� respectively. The

correlations are expressed as follow:

MBsþMBt ¼ ABs� þ B; ð48Þ

where A and B denote the slop and interceptor of the

lines respectively. The coefficients A and B in the above

equation are summarized in Table 1 for Fig. 6 and Table

2 for Fig. 7. Using these relations the critical time to

mark the onset of convective motion can be found with

given conditions.
8. Conclusions

In the present study, the onset of solutal Marangoni

convection for absorption process accompanied by heat

transfer has been investigated under propagation theory.

The following conclusions are drawn from the pres-

ent study.

1. Based on the scaling analysis, it is found that the sum

of the re-modified Marangoni numbers MBs and MBt
have a linear relation to the modified solutal Biot

number Bs�. Using these relations, the critical time

sc to mark the onset of Marangoni convection can

be predicted with given conditions.

2. There is a critical Bs causing the most unstable state

of fluid layer. This means that the transport condition

of the upper gas phase affects Marangoni instability

at the surface.

3. The effect of Sc on the criteria of solutal Marangoni

instability is not significant for a larger value than

500.

It is expected that the results from the present study

provide a guideline to enhance heat and mass transfer
performance during the absorption process. It can be

achieved by performing the numerical simulation of

Marangoni convection for the whole time domain using

the results of the present study, i.e., the velocity and

concentration profiles at the critical onset time as the

initial condition of numerical analysis and conducting

the experiments on the visualization of Marangoni

convection.
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